

For Research Use Only. Not for use in diagnostic procedures.

Fragment RNA

Dilute the total RNA in nuclease-free ultrapure water to a final volume of 8.5 μl in the DFP plate. Add 8.5 μl EPH. Pipette to mix. Centrifuge at 280 × g for 1 minute. Place on the thermal cycler and run the Elution 2-Frag-Prime program.

 \Box 6 Centrifuge at 280 × g for 1 minute.

Synthesize First Strand cDNA

$\Box 1$	Add 50 µl Protoscript II to FSA. Pipette or invert
	to mix, and then centrifuge briefly.
$\square 2$	Add 8 µl Protoscript II and FSA mixture.
$\square 3$	Pipette to mix.
$\Box 4$	Place on the thermal cycler and run the
	Synthesize 1st Strand program.

Synthesize Second Strand cDNA

$\Box 1$	Add 5 µl RSB.
□ 2	
	Pipette to mix.
	Centrifuge at 280 × g for 1 minute.
□ 5	Place on the preprogrammed thermal cycler and
	run the Synthesize 2nd Strand program.
□6	Place on the bench and let stand to bring to room
	temperature (~5 minutes).
$\Box 7$	Add 90 µl AMPure XP Beads to the CCP plate.
□8	Transfer all to the CCP plate.
<u>9</u>	Shake at 1800 rpm for 2 minutes.
$\Box 10$	Incubate at room temperature for 5 minutes.
$\Box 11$	Centrifuge at 280 × g for 1 minute.
□12	Place on a magnetic stand until liquid is clear.
$\Box 13$	Remove and discard 135 µl supernatant.
	Wash 2 times with 200 µl 80% EtOH.
□15	Use a 20 µl pipette to remove residual EtOH.
□16	Air-dry for 5 minutes.
	Remove from the magnetic stand.
□18	Add 20 µl RSB.
□19	Shake at 1800 rpm for 2 minutes.
	Incubate at room temperature for 2 minutes.
	Centrifuge at 280 × g for 1 minute.
	Place on a magnetic stand until liquid is clear.
\square 23	Transfer 17.5 µl supernatant to the ALP plate.
	FE STOPPING POINT
	you are stopping, seal the plate and store at
-25	5°C to -15°C for up to 7 days.

Adenylate 3' Ends

$\Box 1$	Add 12.5 µl ATL.
$\square 2$	Pipette to mix.
$\square 3$	Centrifuge at 280 × g for 1 minute.
$\Box 4$	Place on the thermal cycler and start the program ATAIL70.
□5	Place on ice for 1 minute or until cooled to 2°C to 8°C.

Ligate Adapters

 $\Box 1$ Add the following.

	RSB (2.5 μl)
	LIG (2.5 μl)
	RNA adapters (2.5 μl)
2	Pipette to mix.
3	Centrifuge at 280 × g for 1 minute.
$\overline{4}$	Place on the thermal cycler and start the program
	LIG30.
]5	Add 5 μl STL.
6	Pipette to mix.
7	Centrifuge at 280 × g for 1 minute.
8	Add 42 µl AMPure XP Beads to each well of
	CAP.
9	Transfer entire volume from ALP plate to CAP.
	Shake at 1800 rpm for 2 minutes.
	Incubate at room temperature for 5 minutes.
12	Centrifuge at 280 × g for 1 minute.
13	Place on a magnetic stand until liquid is clear.
14	Remove and discard all supernatant.
15	Wash 2 times with 200 µl 80% EtOH.
	Use a 20 µl pipette to remove residual EtOH.
17	Air-dry for 5 minutes.
	Remove from the magnetic stand.
	Add 22.5 μl RSB.
	Shake at 1800 rpm for 2 minutes.
	Incubate at room temperature for 2 minutes.
22	Centrifuge at 280 × g for 1 minute.
	Place on a magnetic stand until liquid is clear.
24	Transfer 20 µl supernatant to the PCR plate.
SA	FE STOPPING POINT
If y	you are stopping, seal the plate and store at
	5°C to -15°C for up to 7 days

Perform First PCR Amplification

$\Box 1$	Place the PCR plate on ice and add 5 µl PPC.
$\square 2$	Add 25 µl PMM.
$\square 3$	Pipette to mix.
$\Box 4$	Place on the thermal cycler and run the PCR
	program.
$\Box 5$	Add 50 μ l AMPure XP Beads to the PPP plate for
	each well corresponding to a sample in the
	PCR plate.
	Centrifuge PCR plate at 280 × g for 1 minute.
$\Box 7$	Transfer the entire volume (50 µl) to the PPP
	plate.
	Shake at 1800 rpm for 2 minutes.
<u>9</u>	Incubate at room temperature for 5 minutes.
	Centrifuge at 280 × g for 1 minute.
	Place on a magnetic stand until liquid is clear.
	Remove and discard all supernatant.
	Wash 2 times with 200 µl 80% EtOH.
	Use a 20 µl pipette to remove residual EtOH.
	Air-dry for 5 minutes.
	Remove from the magnetic stand.
	Add 12.5 µl RSB.
	Shake at 1800 rpm for 2 minutes.
	Incubate at room temperature for 2 minutes.
	Centrifuge at 280 × g for 1 minute.
	Place on a magnetic stand until liquid is clear.
\square 22	Transfer 12 µl supernatant to the TSP1 plate.
SA	FE STOPPING POINT
If y	you are stopping, seal the plate and store at
-25	5°C to -15°C for up to 7 days.

Check Libraries

If using a Standard Sensitivity NGS Fragment Analysis Kit, run 2 μl undiluted DNA library.
If using a DNA 1000 chip, run 1 μl undiluted DNA library.
Check the size and purity of the sample. Expect the final product to be a band at ~250–300 bp.
Calculate the concentration of the library using a region selection of 160–700 bp.

Hybridize Probes

Dilute 200 ng of each library in 10 μl RSB.
Add the following to the RAH1 plate for a final volume of 25 μl.
200 ng library (in 10 μl RSB)
CT3 (12.5 μl)
RPO (2.5 μl)
Shake at 1200 rpm for 1 minute.
Centrifuge at 280 × g for 1 minute.
Place on the thermal cycler and run the RNA HYB program.

Capture Hybridized Probes

$\Box 1$	Centrifuge RAH1 at 280 × g for 1 minute.
$\square 2$	Add 62.5 µl SMB.
$\square 3$	Shake at 1200 rpm for 5 minutes.
$\Box 4$	Incubate at room temperature for 25 minutes.
$\Box 5$	Centrifuge at 280 × g for 1 minute.
□6	Place on a magnetic stand until liquid is clear.
$\Box 7$	Remove and discard all supernatant.
$\square 8$	Remove from the magnetic stand.
<u>9</u>	Add 50 µl EEW.
$\Box 10$	Centrifuge at 280 × g for 10 seconds.
	Pipette to mix.
$\Box 12$	Shake at 1800 rpm for 4 minutes.
$\Box 13$	Place on the thermal cycler and start the program
	RNA BIND.
$\Box 14$	Place on a magnetic stand until liquid is clear.
$\Box 15$	Remove and discard all supernatant.
□16	Remove from the magnetic stand.
$\Box 17$	Repeat steps 9–16 for a total of 2 washes.
$\Box 18$	Mix 9.5 μ l EE1 and 0.5 μ l HP3, and then vortex.
	Add 10 µl elution premix.
$\square 20$	Centrifuge at 280 × g for 10 seconds.
\square 21	Shake at 1800 rpm for 2 minutes.
\square 22	Incubate at room temperature for 2 minutes.
	Centrifuge at 280 × g for 1 minute.
	Place on a magnetic stand until liquid is clear.
$\square 25$	Transfer 9 µl supernatant to the RAH2 plate.
	Add 1.7 μl ET2.
$\square 27$	Shake at 1200 rpm for 1 minute.
□28	Centrifuge at 280 × g for 1 minute.
SA	FE STOPPING POINT
If v	you are stopping, seal the plate and store at

If you are stopping, seal the plate and store at -25°C to -15°C for up to 7 days.

Perform Second Hybridization

$\Box 1$ Add the following.

- CT3 (12.5 μl)
- PRPO (2.5 μl)
- \square 2 Shake at 1200 rpm for 1 minute.
- \Box 3 Centrifuge at 280 × g for 1 minute.
- Place on the thermal cycler and run the RNA HYB program.

Perform Second Capture

□1 Centrifuge RAH2 at 280 × g for 1 minute.□2 Add 62.5 µl SMB.

- \square 3 Shake at 1200 rpm for 5 minutes.
- $\Box 4$ Incubate at room temperature for 25 minutes.
- \Box 5 Centrifuge at 280 × g for 1 minute.
- Place on a magnetic stand until liquid is clear.
- \Box 7 Remove and discard all supernatant.
- \square 8 Remove from the magnetic stand.
- \square 9 Add 50 μ l EEW.
- \Box 10 Centrifuge at 280 × g for 10 seconds.
- \Box 11 Pipette to mix.
- \Box 12 Shake at 1800 rpm for 4 minutes.
- □13 Place on the thermal cycler and start the program RNA BIND.
- \Box 14 Place on a magnetic stand until liquid is clear.
- \Box 15 Remove and discard all supernatant.
- \Box 16 Remove from the magnetic stand.
- \Box 17 Repeat steps 9–16 for a total of 2 washes.
- \square 18 Mix 9.5 μ l EE1 and 0.5 μ l HP3, and then vortex.
- \Box 19 Add 10 µl elution premix.
- \square 20 Centrifuge at 280 × g for 10 seconds.
- \square 21 Shake at 1800 rpm for 2 minutes.
- \square 22 Incubate at room temperature for 2 minutes.
- \square 23 Centrifuge at 280 × g for 1 minute.
- \square 24 Place on a magnetic stand until liquid is clear.
- \square 25 Transfer 9 µl supernatant to the RAW1 plate.
- \square 26 Add 1.7 μ l ET2.
- \square 27 Shake at 1200 rpm for 1 minute.
- \square 28 Centrifuge at 280 × g for 1 minute.

Clean Up Captured Library

□1 A	dd 20	μl	AMPure	XP	Beads.
------	-------	----	---------------	----	--------

- \square 2 Shake at 1800 rpm for 2 minutes.
- Incubate at room temperature for 5 minutes.
- $\Box 4$ Centrifuge at 280 × g for 1 minute.
- \Box 5 Place on a magnetic stand until liquid is clear.
- \square 6 Remove and discard 27.5 μ l supernatant.
- \Box 7 Wash 2 times with 200 μ l 80% EtOH.
- $\square 8$ Use a 20 μ l pipette to remove residual EtOH.
- \square 9 Air-dry for 5 minutes.
- \square 10 Remove from the magnetic stand.
- \Box 11 Add 27.5 µl RSB.
- \Box 12 Shake at 1800 rpm for 2 minutes.
- \square 13 Incubate at room temperature for 2 minutes.
- \Box 14 Centrifuge at 280 × g for 1 minute.
- \Box 15 Place on a magnetic stand until liquid is clear.
- \Box 16 Transfer 25 µl supernatant to the PCR2 plate.

SAFE STOPPING POINT

If you are stopping, seal the plate and store at -25°C to -15°C for up to 7 days.

For Research Use Only. Not for use in diagnostic procedures.

Perform Second PCR Amplification

□1 Add 5 µl PPC. □2 Add 20 µl EPM. □3 Pipette to mix. □4 Centrifuge at 280 × g for 1 minute. □5 Place on the thermal cycler and run the EPM AMP program. SAFE STOPPING POINT If you are stopping, seal the plate and store at

2°C to 8°C for up to 2 days.

Clean Up Amplified Enriched Library

1	Centrifuge the PCR2 plate at 280 × g for 1 minute.
2	Add 90 µl AMPure XP Beads to the RAC2 plate.
_3	Transfer 50 µl to the plate.
$\Box 4$	Shake RAC2 at 1800 rpm for 2 minutes.
_5	Incubate at room temperature for 5 minutes.
1 6	Centrifuge at 280 × g for 1 minute.
_7	Place on a magnetic stand until liquid is clear.
8	Remove and discard 140 µl supernatant.
9	Wash 2 times with 200 µl 80% EtOH.
1 0	Use a 20 µl pipette to remove residual EtOH.
11	Air-dry on the magnetic stand for 5 minutes.
<u>12</u>	Remove from the magnetic stand.
<u> </u>	Add 32 µl RSB.
$\Box 14$	Shake at 1800 rpm for 1 minute.
□ 15	Incubate at room temperature for 2 minutes.
□ 16	Centrifuge at 280 × g for 1 minute.
	Place on a magnetic stand until liquid is clear.
1 8	Transfer 30 µl supernatant to the RAL plate.
SA	FE STOPPING POINT
If y	you are stopping, seal the plate and store at
	5°C to -15°C for up to 7 days.

Check Enriched Libraries

page.

$\Box 1$	Quantify the libraries.
$\square 2$	If using a Standard Sensitivity NGS Fragment
	Analysis Kit, run 2 µl of the postenriched library
$\square 3$	If using a DNA 1000 Chip, run 1 μl of the
	postenriched library.
$\Box 4$	Check the size and purity of the sample. Expect
	the final product to be a band at ~250–300 bp.
$\Box 5$	Check the size of the library for a distribution of
	DNA fragments with a size range from ~200 bp-
	1 kb.
$\Box 6$	Denature and dilute pooled libraries to the
	loading concentration for the instrument you are
	using. For loading recommendations, see the
	TruSight RNA Pan-Cancer Panel Kit support

Acronyms

Acronym	Definition
ALP	Adapter Ligation Plate
ATL	A-Tailing Mix
CAP	Clean Up ALP Plate
CCP	cDNA Clean Up Plate
CPP	Clean Up PCR Plate
СТЗ	Capture Target Buffer 3
DFP	Depleted RNA Fragmentation Plate
EE1	Enrichment Elution Buffer 1
EEW	Enhanced Enrichment Wash Buffer
EPH	Elute, Prime, Fragment High Mix
EPM	Enhanced PCR Mix
ET2	Elute Target Buffer 2
FSA	First Strand Synthesis Act D Mix
HP3	2N NaOH
LIG	Ligation Mix
PCR	Polymerase Chain Reaction Plate
PMM	PCR Master Mix
PPC	PCR Primer Cocktail
RAA	RNA Access Amplification Plate
RAC1	RNA Access Clean Up Plate 1

Acronym	Definition
RAC2	RNA Access Clean Up Plate 2
RAH1	RNA Access Hyb Plate 1
RAH2	RNA Access Hyb Plate 2
RAL	RNA Access Library Plate
RAW1	RNA Access Wash Plate 1
RPO	RNA PanCancer Oligos
RSB	Resuspension Buffer
SMB	Streptavidin Magnetic Beads
SMM	Second Strand Marking Master Mix
STL	Stop Ligation Buffer
TSP	Target Sample Plate