Denature and Anneal RNA

1 Combine the following volumes :

Master Mix Compone nt	8 Sample s (μl)	24 Sample s (μl)	48 Sample s (μl)	72 Sample s (μl)
FSM	72	216	432	648
RVT	8	24	48	72

- 2 Pipette 10 times to mix.
- 3 Place the FSM+RVT Master Mix on ice.
- $\hfill \hfill \hfill$
- □ 5 Add 8.5 μl EPH3.
- □ 6 Shake the plate at 1200 rpm for 1 minute.
- 7 Centrifuge at 280 × g for 1 minute.
- 8 Place on the thermal cycler and run the LQ-RNA or HQ-RNA program.

Synthesize First Strand cDNA

- 1 Remove the CF PCR plate from the thermal cycler.
- ☐ 2 Pipette to mix FSM+RVT Master Mix.
- $\hfill \square$ 3 Add 8 μl FSM+RVT Master Mix .
- 4 Discard any remaining master mix after use.
- 5 Pipette to mix 5 times.
- 6 Shake the plate at 1200 rpm for 1 minute.
- 7 Centrifuge at 280 × g for 1 minute.
- 8 Place on the thermal cycler and run the 1stSS program.

Synthesize Second Strand cDNA

- 1 Remove the CF PCR plate from the thermal cycler.
- 2 Add 25 μl SSM.
- 3 Shake the plate at 1200 rpm for 1 minute.
- 4 Place the plate on the thermal cycler and run the 2ndSS program.

Clean Up cDNA

- □ 1 Remove the CF PCR plate from the thermal cycler.
- 2 Vortex SPB for 1 minute to resuspend the beads.
- \square 3 Add 90 μ I SPB to the BIND1 MIDI plate.
- $\hfill \hfill \hfill$
- □ 5 Shake at 1800 rpm for 2 minutes.
- 6 Incubate at room temperature for 5 minutes.
- □ 7 Place the BIND1 MIDI plate on a magnetic stand for 5 minutes.
- □ 8 Remove and discard all supernatant.
- 9 Add 200 μl EtOH, and then remove EtOH after 30 seconds.
- □ 10 Wash beads a second time.
- □ 11 Remove residual supernatant.
- 12 Remove the BIND1 MIDI plate from the magnetic stand.
- \square 13 Add 22 μ l RSB.
- □ 14 Shake at 1800 rpm for 2 minutes.
- □ 15 Incubate at room temperature for 2 minutes.
- □ 16 Place on a magnetic stand for 2 minutes.
- $\hfill\Box$ 17 Transfer 20 μI eluate from the BIND1 MIDI plate to the PCF plate.
- $\hfill \square$ 18 Add 30 μl RSB to the PCF plate, and then pipette at least 10 times to mix.
- □ 19 Apply Microseal 'B'.

SAFE STOPPING POINT

If you are stopping, ensure that the PCF PCR plate is sealed, and briefly centrifuge at $280 \times g$. Store at -25°C to -15°C for up to 7 days.

Fragment gDNA

- $\hfill\Box$ 1 Add 12 μI of each gDNA sample into a separate well of a Covaris 8 microTUBE Strip.
- \square 2 Add 40 μ l TEB.
- □ 3 Pipette to mix.
- 4 Fill any unused Covaris 8 microTUBE Strip wells with 52 μl water.
- □ 5 Seal the microTUBE Strip.
- □ 6 Centrifuge briefly.
- □ 7 Fragment the gDNA using the following settings.

Setting	E220 evolution	LE220	ME220
Peak Incident Power	175 watts	450 watts	50 watts
Duty Factor	10%	30%	30%
Cycles per Burst	200	200	1000
Treatment Time	280 seconds	250 seconds	10 seconds
Temperature	7°C	7°C	12°C
Intensifier	yes	N/A	N/A
Other	Intensifier	N/A	Wave guide
Pulse repeats	N/A	N/A	20
Average power	N/A	N/A	15 watts

- 8 Centrifuge tube strip briefly to collect droplets.
- \square 9 Transfer 50 μl of each sheared gDNA sample to the LP plate.

SAFE STOPPING POINT

If you are stopping, apply Microseal 'B' to the LP PCR plate and briefly centrifuge at $280 \times g$. Store at -25° C to -15° C for up to 7 days.

Perform End Repair and A-Tailing

1 Combine the appropriate volumes from the table below in a microcentrifuge tube to prepare ERA1 Master Mix.

Master Mix Compone nt	8 Sample s (μΙ)	24 Sample s (μl)	48 Sample s (μl)	72 Sample s (μΙ)
ERA1-B	69	207	415	622
ERA1-A	27	81	161	242

- 2 Pipette 10 times to mix, and then place ERA1 Master Mix on ice.
- $\hfill 3$ Add 10 μI ERA1 Master Mix to each sample in the LP2 MIDI plate.
- 4 Discard any remaining master mix after use.
- 5 Shake the plate at 1800 rpm for 2 minutes.
- 6 Incubate at 30°C for 30 minutes.
- 7 Immediately transfer to another incubator at 65°C and incubate for 20 minutes.
- 8 Place plate on ice for 5 minutes.

Ligate Adapters

- \square 1 Add 60 μ l ALB1.
- 2 Add 5 μl LIG3.
- 3 Pipette UMI DIA to mix.
- $\hfill\Box$ 4 $\,$ Add 10 μI UMI DNA index anchor.
- 5 Shake the plate at 1800 rpm for 2 minutes.
 6 Incubate at room temperature for 30
- minutes.

 □ 7 Add 5 μl STL.
 - 8 Shake the plate at 1800 rpm for 2 minutes.

Clean Up Ligation

- 1 Vortex SPB for 1 minute to resuspend the beads.
- $\hfill 2$ Add 112 μl SPB to the LP2 MIDI plate.
- □ 3 Shake at 1800 rpm for 2 minutes.
- 4 Incubate at room temperature for 5 minutes.
- 5 Place the LP2 MIDI plate on the magnetic stand for 10 minutes.
- G Use a pipette to remove and discard all supernatant.
- Add 200 μl EtOH, and then remove EtOH after 30 seconds.
- 8 Wash beads a second time.
- Use a P20 pipette with fine tips to remove residual supernatant.
- 10 Remove the LP2 MIDI plate from the magnetic stand.
- □ 11 Add 22.5 µl RSB.
- □ 12 Shake the plate at 1800 rpm for 2 minutes.
- □ 13 Incubate at room temperature for 2 minutes.
- □ 14 Place on a magnetic stand for 2 minutes.
- \square 15 Transfer 20 μl of each eluate from the LP2 MIDI plate to the LS PCR plate.

Index PCR

- Pipette to mix UDP.
- Add 10 µl index (UDPxxxx) to the LS plate.
- Add 20 µl EPM.
- Shake the plate at 1200 rpm for 1 minute.
- Transfer to the post-PCR area.
- Centrifuge the plate at 280 × g for 1 minute.
- Place the plate on the thermal cycler and run the I-PCR program.
- Relabel the plate ALS.

SAFE STOPPING POINT

If you are stopping, ensure that the ALS plate is sealed, and briefly centrifuge at 280 × g. Store at -25°C to -15°C for up to 7 days.

Set Up First Hybridization

- Transfer 20 μl of each library from the ALS PCR plate to the HYB1 PCR plate.
- □ 2 Add 25 µl EHB.
- □ 3 Add the appropriate probe.
 - For DNA libraries, add 5 μl OPD2.
 - For RNA libraries, add 5 µl OPR1.
- ☐ 4 Shake the plate at 1200 rpm for 2 minutes.
- □ 5 Place on the thermal cycler and run the HYB1 program. Hybridize for 8-24 hours (overnight) at 57°C.

Capture Targets One

- □ 1 Remove the HYB1 PCR plate from the thermal cycler.
- □ 2 Vortex SMB for 1 minute to resuspend the beads.
- \square 3 Add 150 μ I SMB to the CAP1 MIDI plate.
- □ 4 Transfer 50 µl from the HYB1 PCR plate to the CAP1 MIDI plate.
- □ 5 Shake the plate at 1800 rpm for 2 minutes.
- □ 6 Incubate in a Hybex incubator at 57°C for 25 minutes.
- □ 7 Place on a magnetic stand for 2 minutes.
- □ 8 Remove and discard all supernatant.
- □ 9 Remove the CAP1 MIDI plate from the magnetic stand.
- □ 10 Add 200 µl EEW.
- □ 11 Pipette to mix 10 times.
- □ 12 Shake at 1800 rpm for 4 minutes.
- □ 13 Incubate in a Hybex incubator at 57°C for 5 minutes.
- □ 14 Place on a magnetic stand for 2 minutes.
- □ 15 Remove and discard all supernatant.
- □ 16 Wash beads a second time.
- □ 17 Wash beads a third time.
- □ 18 Use a P20 pipette with fine tips to remove any residual supernatant.
- □ 19 Combine the following volumes in a microcentrifuge tube to prepare the EE2+HP3 Elution Mix:

Elution Mix Compone nt	8 Librarie s (μΙ)	24 Librarie s (μΙ)	48 Librarie s (μΙ)	72 Librarie s (μΙ)
EE2	171	512	1024	1536
HP3	9	27	55	82

TruSight Oncology 500 High Throughput Checklist

- □ 20 Vortex briefly. □ 21 Remove the CA
- 21 Remove the CAP1 MIDI plate from the magnetic stand.
- \square 22 Add 17 μ l EE2+HP3 Elution Mix.
- □ 23 Discard remaining elution mix after use.
- □ 24 Shake the plate at 1800 rpm for 2 minutes.
- □ 25 Place on a magnetic stand for 2 minutes.
- $\hfill \hfill \hfill$
- $\hfill\Box$ 27 Add 5 μl ET2 to the ELU1 PCR plate.
- □ 28 Shake the plate at 1200 rpm for 2 minutes.

Set Up Second Hybridization

- $\ \square$ 1 Add 25 μ l EHB to the ELU1 PCR plate.
- $\ \square$ 2 Add the appropriate probe.
 - For DNA libraries, add 5 μl OPD2.
 - For RNA libraries, add 5 μl OPR1.
- $\ \square$ 3 Shake the plate at 1200 rpm for 2 minutes.
 - 4 Place on the thermal cycler and run the HYB2 program. Hybridize at 57°C for 1.5-4 hours.

Capture Targets Two

- 1 Remove the ELU1 PCR plate from the thermal cycler.
- 2 Vortex SMB for 1 minute to resuspend the beads.
- $\ \square$ 3 Add 150 μ l SMB to the CAP2 MIDI plate.
- $\hfill \hfill \hfill$
- □ 5 Shake at 1800 rpm for 2 minutes.
- ☐ 6 Incubate in a Hybex incubator at 57°C for 25 minutes.
- □ 7 Place on a magnetic stand for 2 minutes.
- □ 8 Remove and discard all supernatant.
- 9 Remove the CAP2 MIDI plate from the magnetic stand.
- □ 10 Add 200 µl RSB.
- □ 11 Shake the plate at 1800 rpm for 4 minutes.
- □ 12 Place on a magnetic stand for 2 minutes.
- □ 13 Remove and discard all supernatant.
- □ 14 Use a P20 pipette with fine tips to remove any residual supernatant.
- □ 15 Combine the following volumes to prepare the EE2+HP3 Elution Mix:

Elution Mix Compone nt	8 Librarie s (μΙ)	24 Librarie s (μΙ)	48 Librarie s (μΙ)	72 Librarie s (μΙ)
EE2	209	627	1254	1881
HP3	11	33	66	99

- ☐ 16 Vortex to mix.
- □ 17 Remove the CAP2 MIDI plate from the magnetic stand.
- 18 Add 22 μl EE2+HP3 Elution Mix.
- □ 19 Discard remaining elution mix after use.
- $\hfill \square$ 20 Place on a magnetic stand for 2 minutes.

TruSight Oncology 500 High Throughput Checklist

For Research Use Only. Not for use in diagnostic procedures.

- $\hfill \square$ 21 Transfer 20 μl eluate from the CAP2 MIDI plate to the ELU2 PCR plate.
- $\hfill \hfill \hfill$
- $\hfill \square$ 23 Shake the plate at 1200 rpm for 2 minutes.

SAFE STOPPING POINT

If you are stopping, ensure that the ELU2 plate is sealed and briefly centrifuge at $280 \times g$. Store at -25° C to -15° C for up to 7 days.

Amplify Enriched Library

- $\ \square$ 1 Add 5 μ l PPC3 to the ELU2 PCR plate.
- \square 2 Add 20 μ l EPM.
- □ 3 Shake the ELU2 PCR plate at 1200 rpm for 2 minutes.
- ☐ 4 Centrifuge at 280 × g for one minute.
- 5 Place on the preprogrammed thermal cycler and run the EL-PCR program.

Clean Up Amplified Enriched Library

- □ 1 Remove the ELU2 PCR plate from the thermal cycler.
- 2 Vortex SPB for 1 minute to resuspend the beads.
- \square 3 Add 110 μ I SPB to the BIND2 MIDI plate.
- Transfer 50 μl from the ELU2 PCR plate to the BIND2 MIDI plate.
- □ 5 Shake at 1800 rpm for 2 minutes.
- □ 6 Incubate at room temperature for 5 minutes.
- 7 Place the BIND2 MIDI plate on magnetic stand for 5 minutes.
- □ 8 Remove and discard all supernatant.
- 9 Add 200 μl EtOH, and then remove EtOH after 30 seconds.
- □ 10 Wash beads a second time.
- ☐ 11 Use a P20 pipette with fine tips to remove residual supernatant.
- □ 12 Remove the BIND2 MIDI plate from the magnetic stand.
- \square 13 Add 32 μ l RSB.
- □ 14 Shake at 1800 rpm for 2 minutes.
- □ 15 Incubate at room temperature for 2 minutes.
- □ 16 Place on a magnetic stand for 2 minutes.
- $\hfill\Box$ 17 Transfer 30 μl from the BIND2 MIDI plate to the PL PCR plate.

SAFE STOPPING POINT

If you are stopping, apply Microseal 'B' to the PL PCR plate and briefly centrifuge at $280 \times g$. Store at -25° C to -15° C for up to 30 days.

Normalize Libraries

- 1 Pulse vortex LNB1 tube for 1 minute at maximum speed. Invert tube to make sure all beads are resuspended.
- \square 2 Set a P1000 to 800 μ l and pipette LNB1 up and down 10 times to mix.
- □ 3 Combine the following reagents to create LNA1+LNB1 Master Mix:

Master Mix Compone nt	8 Librarie s (μΙ)	24 Librarie s	48 Librarie s	72 Librarie s
LNA1	352	1055	2110	3166
LNB1	64	192	384	577

4 Combine the following reagents in a new microcentrifuge tube to create a fresh EE2+HP3 Elution Mix:

Elution Mix Compone nt	8 Librarie s (μΙ)	24 Librarie s (μΙ)	48 Librarie s (μΙ)	72 Librarie s (μΙ)
EE2	304	912	1824	2736
HP3	16	48	96	144

- □ 5 Vortex to mix.
- ☐ 6 Vortex LNA1+LNB1 Master Mix.
- $\hfill 7$ Add 45 μI LNA1+LNB1 Master Mix to the BBN MIDI plate.
- $\hfill = 8$ Add 20 μI from the PL PCR plate to the BBN MIDI plate.
- □ 9 Shake at 1800 rpm for 30 minutes.
- □ 10 Place the plate on a magnetic stand for 2 minutes.
- □ 11 Remove and discard all supernatant.
- 12 Remove the BBN MIDI plate from the magnetic stand.

- 13 Add 45 μl LNW1.
- □ 14 Shake at 1800 rpm for 5 minutes.
- □ 15 Place on a magnetic stand for 2 minutes.
- ☐ 16 Remove and discard all supernatant.
- □ 17 Wash beads a second time.
- □ 18 Use a P20 pipette with fine tips to remove any residual supernatant.
- 19 Remove the BBN MIDI plate from the magnetic stand.
- 20 Vortex EE2+HP3 Elution Mix and then centrifuge briefly.
- \square 21 Add 32 μ l EE2+HP3 Elution Mix.
- □ 22 Discard remaining elution mix after use.
- □ 23 Shake at 1800 rpm for 2 minutes.
- □ 24 Place on a magnetic stand for 2 minutes.
- $\hfill \hfill \hfill$
- \square 26 Add 30 μ l LNS1 to the NL PCR plate.
- □ 27 Pipette up and down 5 times to mix.

SAFE STOPPING POINT

If you are stopping, apply Microseal 'B' to the NL PCR plate and briefly centrifuge at $280 \times g$. Store at -25° C to -15° C for up to 30 days.

Pool Libraries and Dilute to the Loading Concentration

1 Pool, denature, and dilute libraries to the loading concentration.