

TruSeq Custom Amplicon Low Input Kit Checklist

For Research Use Only. Not for use in diagnostic procedures.

Quantify and Dilute DNA

_2	Dilute DNA to 10–25 ng/µl in RS1.
□ 3	Requantify the diluted DNA.
□ 4	Further dilute DNA in a LoBind tube as follows
	For the dual strand protocol, prepare ~10%
	extra DNA.
	a Dilute the desired input DNA amount in
	RS1 to result in a final volume of 4 μl.
	□b Add 1 µl SS1.
\Box 5	[Dual strand protocol] Skip to Hybridize Oligo
	Pool (Dual Strand) on page 1.

□ 1 Quantify DNA using a fluorometric method.

Hybridize Oligo Pool

_ 1	Dilute 2.5 µl CAT with 2.5 µl RS1 per sample
	well. Pulse vortex to mix, and then centrifuge
]2	briefly. Dilute 2.5 µl ACP3 with 2.5 µl RS1. Pulse vortex
	to mix, and then centrifuge briefly.
3	Dilute 2 µl 2800M with 2 µl RS1 and 1 µl SS1.
	Pulse vortex to mix, and then centrifuge briefly.
4	
3 5	Add 5 μl diluted ACP3 to the well that contains
	diluted 2800M.
	Add 5 µl RS1 to 1 well.
7	Add 5 µl diluted DNA to remaining wells.
8	Add 5 μl diluted CAT to all wells except the well
	containing 2800M.
9	Add 15 µl OHS2 to each well. Pipette slowly to
_	mix.
_10	If bubbles form, centrifuge the plate at $100 \times g$ for 20 seconds.
11	Place on the thermal cycler and run the HYB
	program.
<u> </u>	Combine ELE and ELB as follows.
	▶ [16-sample kit] Transfer 18 µl ELE to the
	ELB tube. Flick and invert to mix.
	▶ [96-sample kit] Transfer 137 µl ELE to the
	ELB tube. Flick and invert to mix.
13	Place the ELB/ELE mixture on ice.

Hybridize Oligo Pool (Dual Strand)

- □ 1 Dilute 2.5 µl CAT A with 2.5 µl RS1 per sample well. Pulse vortex to mix, and then centrifuge briefly.
 □ 2 Dilute 2.5 µl CAT B with 2.5 µl RS1 per sample well. Pulse vortex to mix, and then centrifuge briefly.
 □ 3 Dilute 2.5 µl ACP3 with 2.5 µl RS1. Pulse vortex to mix, and then centrifuge briefly.
- DiluteDilute 2 μl 2800M with 2 μl RS1 and 1 μl SS1. Pulse vortex to mix, and then centrifuge briefly.
- ☐ 5 Add 5 µl diluted 2800M to one well.
- 16 Add 5 μl diluted ACP3 to the well that contains diluted 2800M.
- ☐ 7 Add 5 µl RS1 to one well.
- ■8 Add 5 µl diluted DNA to the left half of the plate.
- □ 9 Add 5 μl diluted DNA to the right half of the plate. Do not add DNA to the well containing 2800M.
- □ 10 Add 5 µl diluted CATA to each well containing DNA.
- 11 Add 5 μl diluted CATB to each well containing DNA.
- □ 12 Add 15 µl OHS2. Pipette slowly to mix.
- \square 13 If bubbles form, centrifuge the plate at 100 \times g for 20 seconds.
- ☐ 14 Place on the preprogrammed thermal cycler and run the HYB program.
- ☐ 15 Combine ELE and ELB as follows.
 - ▶ [16 samples] Transfer 18 µl ELE to the ELB tube. Flick and invert to mix.
 - ▶ [96 samples] Transfer 137 µl ELE to the ELB tube. Flick and invert to mix.
- ☐ 16 Place the ELB/ELE mixture on ice.

TruSeq Custom Amplicon Low Input Kit Checklist

For Research Use Only. Not for use in diagnostic procedures.

Remove Unbound Oligos

□ 11 Air-dry for up to 5 minutes.

□ 1	Add 25 µl SPB. Pipette slowly to mix.
\square 2	Incubate at room temperature for 5 minutes.
\square 3	Place on the magnetic stand until liquid is clea
$\Box 4$	Remove and discard all supernatant.
\square 5	Wash three times with 80 µl SW1.
□ 6	Use a 20 µl pipette to remove residual SW1.
\Box 7	Add 80 µl of 60% EtOH.
8	Incubate at room temperature for 30 seconds
9	Remove and discard all supernatant.
\Box 10	Use a 20 µl pipette to remove residual EtOH.

Extend and Ligate Bound Oligos

☐ 1 Remove plate from the magnetic stand. ☐ 2 Add 22 µl ELB/ELE mixture to each well. ☐ 3 Pipette to mix. \square 4 If bubbles form, centrifuge at 100 × g for 20 seconds. ☐ 5 Place on the thermal cycler and run the EXT_ LIG program. ☐ 6 Combine EDP and EMM as follows.

Number of Samples	EDP (µl)	EMM (µI)
1	1.1	21
16	17.6	334
48	53	1003
96	106	2006

☐7 Pipette to mix, and then centrifuge briefly. Place on ice.

Amplify Libraries

∐1	Arrange the Index 1 adapters in columns 1–12
\square 2	Arrange the Index 2 adapters in rows A-H.
□3	Place the HYP plate on a TruSeq Index Plate
	Fixture.
∐4	Add 4 µl of each Index 1 adapter down each column.
□ 5	Add 4 μ I of each Index 2 adapter across each row.
□6	Place the plate on ice or iceless cooler.
\Box 7	Add 20 µl EDP/EMM mixture. Pipette to mix.
8	Centrifuge at 280 × g for 1 minute.
9	Place the plate on ice or iceless cooler.
\Box 10	Immediately transfer to the post-PCR area.
□ 11	Place on the thermal cycler and run the
	PCR program for the appropriate number of
	cycles.

SAFE STOPPING POINT

If you are stopping, seal the plate and store at 2°C to 8°C for up to 2 days. Alternatively, leave on the thermal cycler overnight.

TruSeq Custom Amplicon Low Input Kit Checklist

For Research Use Only. Not for use in diagnostic procedures.

Clean Up Libraries

\Box 1	Centrifuge the HYP plate at 280 × g for 1
	minute.
\square 2	Transfer 45 µl supernatant from the HYP plate
	to the CLP plate.
\square 3	Add 36 µl SPB to the CLP plate.
$\square 4$	Shake the plate at 1800 rpm for 2 minutes.
\Box 5	Incubate at room temperature for 5 minutes.
□ 6	Centrifuge at 280 × g for 1 minute.
\Box 7	Place on a magnetic stand until liquid is clear.
8	Remove and discard all supernatant.
9	Wash two times with 200 µl 80% EtOH.
□ 10	Using a 20 µl pipette, remove residual EtOH.
□11	Remove from the magnetic stand and air-dry.
□ 12	Add 25 µl RSB.
□ 13	Shake the plate at 1800 rpm for 2 minutes.
□ 14	Incubate at room temperature for 2 minutes.
□ 15	Centrifuge at 280 × g for 1 minute.
□ 16	Place on a magnetic stand until liquid is clear.
□ 17	Transfer 20 µl purified library from the CLP plate
	to the LNP plate.
□18	From the liquid in the CLP plate, run an aliquot
	of the samples and control to confirm the PCR
	product sizes.

SAFE STOPPING POINT

If you are stopping, seal the plate and store at -25°C to -15°C for up to 6 months.

Normalize Libraries

\square 1 Add 44 μ l LNA1 per library to a new 15 ml
conical tube.
☐ 2 Use a P1000 pipette to resuspend LNB1.
☐ 3 Transfer 8 µl LNB1 per library to the tube of
LNA1. Invert to mix.
\square 4 Add 45 μ I LNA1/LNB1 to the LNP plate.
☐ 5 Shake at 1800 rpm for 30 minutes.
☐ 6 Place on a magnetic stand until liquid is clear.
☐ 7 Remove and discard all supernatant.
8 Remove from the magnetic stand.
☐9 Wash two times with 45 µl LNW1. Shake at
1800 rpm for 5 minutes per wash.
\square 10 Use a 20 μ l pipette to remove residual LNW1.
☐ 11 Remove from the magnetic stand.
□ 12 Add 30 µl fresh 0.1 N NaOH.
\square 13 Shake at 1800 rpm for 5 minutes.
☐ 14 Place on a magnetic stand until liquid is clear.
\square 15 Add 30 μ l LNS2 to the SGP plate.
☐ 16 Transfer 30 µl supernatant from the LNP plate
to the SGP plate

SAFE STOPPING POINT

If you are stopping, seal the plate and store at -25°C to -15°C for up to 30 days.

 \square 17 Centrifuge at 1000 × g for 1 minute.

Pool Libraries

□ 1	Centrifuge at 1000 × g for 1 minute.
\square 2	Transfer 5 µl of each library to an 8-tube strip.
\square 3	Seal the plate and store at -25°C to -15°C.
$\Box 4$	Transfer the contents of the 8-tube strip to the
	PAL tube. Pipette to mix.
\Box 5	Denature and dilute the library pool to the
	appropriate loading concentration.

SAFE STOPPING POINT

If you are stopping, cap the tubes and store at -25°C to -15°C for up to 7 days.

Acronyms

Acronym	Definition
2800M	Control DNA 2800M
ACP3	Amplicon Control Oligo Pool 3
CAT	Custom Amplicon Oligo Tube
CAT A CAT B	Custom Amplicon Oligo Tube A Custom Amplicon Oligo Tube B
CLP	Clean-up Plate
EDP	Enhanced DNA Polymerase
ELB	Extension-Ligation Buffer
ELE	Extension-Ligation Enzyme
EMM	Enhanced Master Mix
HT1	Hybridization Buffer
HYP	Hybridization Plate
LNA1	Library Normalization Additives 1
LNB1	Library Normalization Beads 1
LNP	Library Normalization Plate
LNS2	Library Normalization Storage Buffer 2
LNW1	Library Normalization Wash 1
OHS2	Oligo Hybridization for Sequencing Reagent 2
PAL	Pooled Amplicon Library
RS1	Resuspension Solution 1
RSB	Resuspension Buffer
SPB	Sample Purification Beads
SGP	Storage Plate
SS1	Sample Stabilization Solution 1
SW1	Stringent Wash 1