
Technical Note: Sequencing

Highlights 

•	 Paired-End Data With Exome Sequencing
PE Sequencing produces twice the read depth and a higher 
number of variant calls

•	 Longer Reads Produce Higher Coverage
Longer read lengths increased mean coverage for all trimmed 
data sets 

•	 Higher Coverage Increases True Variant Calls
Longer read lengths generated more variant calls with high 
precision and sensitivity rates

Introduction
The protein coding portion of the human genome—the exome—
represents approximately 1% of the human genome. At first glance 
this seems like a small percentage; however, studies have shown 
roughly 85% of all mutations associated with Mendelian diseases 
fall within exome boundaries.1 This high concentration of disease 
associated variants within the exome as well as the lower cost 
compared to whole-genome sequencing (WGS) have led to a steady 
increase in the use of whole-exome sequencing (WES) over the 
past several years.2 The ability to focus on a targeted subset of the 
genome, and therefore deepen sequencing coverage, significantly 
increases the power of WES methods to identify, not only causitive 
variants of common Mendelian genetic diseases, but to detect rare 
variants associated with complex disorders.3

The purpose of this technical note is to provide guidance regarding 
optimization of sequencing parameters for exome sequencing. We 
also review the data quality parameters affected by changes in read 
length and coverage depth. As sequencing depth is the cornerstone of 
successful variant discovery, any WES method that bolsters coverage 
levels will also increase experimental accuracy.4 To that end, Nextera 
Rapid Capture Exome sequencing, which utilizes a paired-end 
approach, imparts several key advantages (Figure 1). In addition to 
producing twice the number of reads for the same amount of hands-
on time and effort, sequences aligned as read-pairs enable more 
accurate read alignment, higher numbers of single nucleotide variant 
(SNV) calls, and an ability to detect insertions and deletions (indels) 
that is not possible with single read data.4 Analysis of differential read-
pair spacing also allows removal of PCR duplicates.

Along with the paired-end approach, sequence read length is another 
means of tuning sensitivity and accuracy. To investigate these 
relationships, we sequenced and analyzed a well-characterized CEPH 
trio to assess the impact of read length on mean coverage, coverage 
uniformity, and variant calling.

Read Length and Nextera® Rapid Capture Exome Data
Nextera Rapid Capture Exome data sets with longer read lengths deliver higher mean  
coverage and more variant calls.

Figure 1: Nextera Rapid Capture Exome
Workflow and Specifications

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Nextera Rapid Capture Exome Kit provides a fast, simple method for 
isolating the human exome. The streamlined, workflow combines library 
preparation and exome enrichment steps, and can be completed in 
1.5 days with low DNA sample input.

Pooled, denatured Nextera sequencing library

Hybridize biotinylated probes to exome targets

Biotin probes

Probes bind to streptavidin beads

Elute sequencing-ready fragments from beads

Sequencing-Ready Fragment

Streptavidin beads

Rapid capture using 
strepavidin beads

Specifications Nextera Rapid Capture Exome

Target region size 37 Mb

Number of target exons 214,405

Genomic DNA input 50 ng

Hands-on time 5 hours

Total time 1.5 days

http://www.illumina.com
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Figure 2: Sequencing and Data Analysis Workflow 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Nextera Rapid Capture Exome libraries were pooled and sequenced 
on a HiSeq 2500 System as 2 × 150 bp reads. Reads were trimmed to 
101 bp and 76 bp with HiSeq Analysis Software (HAS) and aligned to 
the reference genome with the Burrows-Wheeler Aligner (BWA). Variant 
calling and indel realignments were performed with Genome Analysis Tool 
Kit (GATK). Effect of read length on mean coverage, variant calling, and 
enrichment performance were analyzed with Picard CalculateHsMetrics14 
and HAS.

Methods 
Exome Capture and Sequencing 

DNA samples for a familial CEPH trio were obtained from the Coriell 
Institute for Medical Research.5 The trio, a father (NA12891), mother 
(NA12892), and daughter (NA12878), is a subset of the CEPH 
collection of samples, from Utah residents, representing Northern and 
Western European ancestry. These samples have been sequenced as 
part of Phase 3 of the HapMap Project6 and pilot Phase II of the 1000 
Genomes Project.7 In addition, these samples are part of the Illumina 
Platinum Genomes Project,8 an effort to provide a gold standard 
data set for variant calls. Exome libraries were prepared using the 
Nextera Rapid Capture Exome Kit (Illumina, FC-140-1001). Pooled 
libraries were loaded on two lanes of two flow cells and sequenced 
on a HiSeq® 2500 System in rapid-run mode. The samples were 
sequenced as 2 × 150 bp paired-end reads. 

Down-Sampling 

To determine the impact of read lengths on enrichment performance 
metrics, the sequence data from each CEPH trio sample was trimmed 
down to generate 101 bp and 76 bp, paired-end data sets. Down-
sampled subsets of the three CEPH trio exomes were generated by 
random selection using the Picard DownsampleSam9 script and then 
included in separate BAM files. 

Alignment and Variant Calling

Analysis of exome data was performed using the Enrichment workflow 
within the HiSeq Analysis Software (HAS).10 Reads were aligned 
to the human hg19 genome11 using the Burrows-Wheeler Aligner 
(BWA).12 PCR duplicates as well as non-uniquely mapped reads were 
filtered out to ensure accurate alignment and variant calling rates. 
Similarly, to account for misaligned reads around indels leading to 
incorrect indel zygosity calls and false positive variant calls, indel 
realignment was performed using the Genome Analysis Tool Kit (GATK) 
software.13,14 Variant calling and indel realignments were performed 
with GATK using default parameters. In addition, effects of varying 
read length and depth of coverage on alignment, variant calling, 
and enrichment performance were analyzed using a combination of 
Picard CalculateHsMetrics15 and metrics generated by the Enrichment 
workflow within HAS.

Comparison to Orthogonal Data

A subset of variant calls from this study were compared to orthogonal 
data from the National Institute of Standards and Technology (NIST) 
Genome in a Bottle Consortium.16 All comparisons were performed 
using the VCFtools suite of tools17 where “precision” is computed as 
the ratio of [# of True Positive Calls/(# of True Positive Calls + # of 
False Positive Calls)] and “recall” is computed as the ratio of [# of True 
Positive Calls/(# of True Positive Calls + # of False Negative Calls)]. All 
plots were generated using standard packages in R.18

Results
Effect of Read Length on Mean Coverage  
and Uniformity

Following our bioinformatic workflow (Figure 2) we assessed the 
impact of read length on mean coverage in the down-sampled and 
original data sets (Figure 3). For all down-sampled data (50 M, 75 M, 
100 M, 150 M, 200 M, 300 M, 400 M) and original data (480 M), 
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we observed the same trend: mean coverage increases with longer 
read lengths. Additionally, our data show that the increase in mean 
coverage with longer read length is magnified the deeper a sample 
is sequenced. For example, the increase in coverage between 75 bp 
and 150 bp reads—in the 50 M read data set—is approximately 50x; 
whereas the increase in coverage—in the 400 M read data set—is 
approximately 360x (Figure 3).

Next, we examined the effect of varying read length on coverage 
uniformity, where uniformity, at a defined depth, is calculated as [# 
of Target Bases Sequenced/(# of Total Target Bases × 100)]. As 
expected in any sequencing study, we found an inverse relationship 
between mean coverage and coverage uniformity. However, our data 
show that the decrease in coverage uniformity as mean coverage 
increases is smaller for longer read lengths (Figure 4, ∆). This indicates 
that longer read length, in addition to greater sequencing depth, can 
be used to modulate the loss of coverage uniformity in sequencing 
studies where greater mean coverage is required.

Effect of Read Length on Variant Identification

For the CEPH exome samples included in this study, we performed 
SNP and indel calling at various read lengths and coverage 
depths. SNVs identified in the trio samples show greater than 98% 
concordance with variants in dbSNP (version 135) for all read lengths 
and depths tested. The indels, at all read lengths and depths, showed 
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Figure 3: Effect of Read Length on Mean Coverage
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Mean coverage was calculated for all downsampled data sets (50 M—480 M) at each read length. Mean coverages were calculated as the average of the trio.

a concordance rate between 70–80%.

In all cases, the number of variants called was positively correlated 
with mean coverage (Figure 5A and 5B). The 2 × 76 bp data at 20× 
mean coverage enabled identification of 6781 SNV calls and 178 indel 
calls. At 400× coverage, 25805 SNVs and 927 indels were identified. 
The 2 × 150 bp reads enabled the identification of a maximum 
of 27529 SNVs and 1038 indels. At the same mean coverage, 
longer reads generated more SNVs than shorter reads (Figure 5A). 
However, with indels, for the same coverage depth, the number of 
indels identified from 2 × 76 bp to 2 × 101 bp reads increased by 
approximately 100 indels, while those identified from 2 × 101 bp and 
2 × 150 bp reads are nearly identical (Figure 5B). 

To further validate the SNV and Indel calls, we calculated the 

Mendelian conflict rate between CEPH trio family members. The 
conflict rate is based on comparison to expected Mendelian 
inheritance patterns and is an established proxy for the false positive 
rate. As the number of SNV calls increased with longer read lengths, 
we also observed a slight increase in false positive rate. The largest 
increase in false positive rate occurred from 101 to 150 base pairs. 
However, for indels, as the read length increased, we found a 
consistent decrease in false positive rate with the largest drop in false 
positives occurring between 76 and 101 base pairs (Figure 5C). 

It bears noting that the actual false positive rates (0.4–0.45%) are 
comparable to the low false positive rate observed with whole-
genome sequencing data19 and do not represent a significant barrier 
to long read sequencing. Read lengths longer than 101 bps offer 
clear advantages for sequencing requiring high mean coverage 

Figure 4: Coverage Uniformity and Mean Coverage for Down Sampled Runs
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Coverage comparison of data from the three read lengths and the down sampled runs have been plotted. The X axis is the mean coverage for bases within the 
target region and the Y axis is coverage uniformity. Uniformity, at a defined depth, is calculated as [# of Target Bases Sequenced/(# of Total Target Bases × 100)]. 
The average coverage uniformity of the CEPH trio is shown here.
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Figure 5: SNVs and Indels, Mean Coverage and Varying Read Length 
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(A) Average number of SNV’s for the CEPH trio have been plotted against the average mean coverage. (B) Average number of indel’s for the CEPH trio have been 
plotted against the average target region coverage.

Table 1: Mendelian Conflict Rate, Precision, and Sensitivity
 

 
 
 
 
 
 
 
 
 

Mendelian trio conflict rate for each of the three read length data sets is tabulated. Variant calls from the read length data were compared against variant calls gener-
ated by variant calls NIST (from the same trio: NA12892, NA12891, and NA12878). Precision is calculated as the ratio of [# of True Positive Calls/(# of True Positive 
Calls + # of False Positive Calls)] and the recall rate (sensitivity) is calculated as the ratio of [# of True Positive Calls/(# of True Positive Calls + # of False Negative 
Calls)]. The average precision and sensitivity for the trio is reported. 

SNP Quality Data Indel Quality Data

2 × 76 bp 2 × 101 bp 2 × 150 bp 2 × 76 bp 2 × 101 bp 2 × 150 bp 

Mendelian Trio Conflic Rate 0.40% 0.41% 0.45% 5.92% 4.97% 4.74%

Precision (Compared to NIST) 91.6% 90.4% 89.4% 57.4% 55.3% 52.7%

Sensitivity (Compared to NIST) 94.7% 97.1% 98.3% 76.0% 79.1% 77.4%

levels such as tumor-normal studies or identification of chromosomal 
rearrangements.

Effect of Read Length on Precision and Sensitivity 

Comparison to NIST “Genome in a Bottle” Repository

To further evaluate the accuracy of the variants identified in this 
study, we compared them to variants in an orthogonal study. The 
NIST repository integrates a total of 12 NA12878 datasets from five 
sequencing platforms and curates variants after filtering those with low 
coverage, discordant genotypes, segmental duplications, structural 
variants and regions with evidence of bias. A total of 25,165 high-
confidence SNVs and 722 indels from GiB were compared to the 
NA12878 variants from all three read length data sets. For SNVs, 
overall high precision rates, between 89—91%, were observed and 
longer read lengths were correlated to slightly lower precision rates 
(Table 1). 

This observation was accompanied by a corresponding increase in the 
recall rate (also known as sensitivity). This indicates an overall increase 
in the ability to detect rare variants, with increasing read length. As 
with the false positive rate, we found the greatest improvement in 
data quality (measured here as increasing sensitivity) between the 
76 bp and 101 base pair read lengths. Similarly, for indels, we find 
that the 101 bp read length marks a reasonable tradeoff between 
precision and sensitivity—particularly when the time and cost required 
to generate 2 × 150 bp reads as opposed to 2 × 101 bp reads are 
considerred (Table 1). 

Discussion 
While the simplest and most cost effective way to maximize coverage 
depth is to utilize paired end sequencing, read length can also be 
used to optimize coverage depth. Our data show the Nextera Rapid 
Capture Exome workflow generates high-quality variants at all three 
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tested read lengths, but that higher read lengths generate greater 
numbers of variants with similar precision and sensitivity. 

Different kinds of sequencing studies require different sequencing 
depths and read lengths. Furthermore, the specific variants under 
investigation (eg. SNV, indel, large chromosomal rearrngements) will 
also be a factor in choosing read length. Here we found the number of 
SNVs identified increased with read length up to 150 bps. With indels, 
however, the number of variants identified did not increase significantly 
beyond 101 bps (Figure 5, Figure 6). Given the results of this study, we 
recommend a minimum 100× coverage and a 2 × 101 bp reads length 
for SNV and indel identification for Nextera Rapid Capture Exome 
sequencing.

Learn More
To download all sequence data from this study, visit 
https://basespace.illumina.com/s/xs2HUjmXiRCk 
https://basespace.illumina.com/s/utak9TSxfp7F

To learn more about Nextera Rapid Capture Exome kits visit 
www.illumina.com/products/nextera-rapid-capture-exome-kits.ilmn
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