
illumına

TruSight® Cancer Workflow on the MiniSeq™ System

This checklist supports the following workflow choices.

Sequencing Instrument:	MiniSeq System
Setup Option	Local Run Manager
Library Preparation Kit:	TruSight Rapid Capture
Indexing:	Dual Indexing
Reagent Kits:	MiniSeq Kit
Analysis Workflow:	DNA Enrichment
Analysis Software:	Local Run Manager

MiniSeq sequencing using TruSight Rapid Capture libraries_

Set Run Parameters

$\Box 1$	Log in to Local Run Manager.
$\square 2$	Click Create Run, and select DNA Enrichment.
$\square 3$	Enter a run name that identifies the run.
$\Box 4$	[Optional] Enter a run description.
$\Box 5$	From the Library Kit drop-down list, select
	TruSight Enrichment Panels.
□6	Specify the number of index reads.
$\Box 7$	Specify a read type: Single Read or Paired End.
$\square 8$	Enter the number of cycles for the run.
□9	Select an alignment method.
$\Box 10$	Select a variant calling method.
$\Box 11$	Specify the Manifest Padding threshold.
\Box 12	Enable or disable the Flag PCR Duplicates and
	Indel Realignment settings.
$\Box 13$	Click Show advanced module settings and
	enable or disable Picard HS metrics.
$\Box 14$	Click Import Manifests.
$\Box 15$	Navigate to the manifest file.
$\Box 16$	Enter a unique sample ID.
$\Box 17$	[Optional] Enter a sample description.
$\Box 18$	Select an Index 1 adapter.
□19	Select an Index 2 adapter.
$\square 20$	Select a manifest file.
\square 21	Click Save Run.

Tagment Genomic DNA

$\Box 1$	Quantify gDNA using a fluorometric method.
$\square 2$	Dilute gDNA in Tris-HCl 10 mM, pH 8.5 to a
	final volume of 10 µl at 5 ng/µl.
$\square 3$	Add the following to a new plate.
	Normalized gDNA (10 μl)
	TD (25 μl)
	TDE1 (15 μl)
$\Box 4$	Shake at 1800 rpm for 1 minute.
□5	Centrifuge at 280 × g for 1 minute.
□6	Place on the 58°C microheating system with the
	lid closed for 10 minutes.
$\Box 7$	Add 15 µl ST.
□8	Shake at 1800 rpm for 1 minute.
<u>9</u>	Centrifuge at 280 × g for 1 minute.
$\Box 10$	Incubate at room temperature for 4 minutes.

For Research Use Only. Not for use in diagnostic procedures.

Clean Up Tagmented DNA

□1 Add 65 μl SPB. □2 Shake at 1800 rpm for 1 minute. □3 Incubate at room temperature for 8 minutes. □4 Centrifuge at 280 × g for 1 minute. □5 Place on a magnetic stand until liquid is clear. □6 Remove and discard all supernatant. □7 Wash 2 times with 200 μl 80% EtOH. □8 Use a 20 μl pipette to remove residual EtOH. □9 Air-dry on the magnetic stand for 10 minutes. □10 Remove from the magnetic stand. □11 Add 22.5 μl RSB. □12 Shake at 1800 rpm for 1 minute. □13 Incubate at room temperature for 2 minutes. □14 Centrifuge at 280 × g for 1 minute. □15 Place on a magnetic stand until liquid is clear.

 \Box 16 Transfer 20 µl supernatant.

Amplify Tagmented DNA

$\Box 1$	Arrange Index 1 (i7) adapters in columns 1–12.
$\square 2$	Arrange Index 2 (i5) adapters in rows A-H.
$\square 3$	Place the plate on the TruSeq Index Plate Fixture.
$\Box 4$	Add 5 µl of each Index 1 adapter down each
	column.
$\Box 5$	Add 5 µl of each Index 2 adapter across each
	row.
□6	Add 20 µl NLM.
$\Box 7$	Shake at 1200 rpm for 1 minute.
$\square 8$	Centrifuge at 280 × g for 1 minute.
□9	Place on the thermal cycler and run the NLM
	AMP program.
SA	FE STOPPING POINT
If v	you are stopping, seal the plate and store at
	C to 8°C for up to 2 days. Alternatively, leave on
	e thermal cycler overnight.
	·

Clean Up Amplified DNA

$\Box 1$	Centrifuge at 280 × g for 1 minute.
$\square 2$	Transfer 50 µl supernatant.
$\square 3$	Add 90 µl SPB.
$\Box 4$	Shake at 1800 rpm for 1 minute.
$\Box 5$	Incubate at room temperature for 10 minutes.
$\Box 6$	Centrifuge at 280 × g for 1 minute.
$\Box 7$	Place on a magnetic stand until liquid is clear.
$\square 8$	Remove and discard all supernatant.
<u>9</u>	Wash 2 times with 200 µl 80% EtOH.
$\Box 10$	Use a 20 µl pipette to remove residual EtOH.
$\Box 11$	Air-dry on the magnetic stand for 10 minutes.
$\Box 12$	Add 27.5 µl RSB.
$\Box 13$	Shake at 1800 rpm for 1 minute.
	Incubate at room temperature for 2 minutes.
$\Box 15$	Centrifuge at 280 × g for 1 minute.
$\Box 16$	Place on a magnetic stand until liquid is clear.
$\Box 17$	Transfer 25 µl supernatant.
□18	Quantify the library using a fluorometric method. $\\$
SA	FE STOPPING POINT
If y	you are stopping, seal the plate and store at
-25	5°C to -15°C for up to 14 days.

Hybridize Probes

\Box 1 Combine 500 ng of each DNA library. Make sure \Box 1 Centrifuge at 280 × g for 1 minute. that each library has a unique index. ▶ For total volume > 40 μ l, concentrate the pooled sample to 40 µl. ▶ For total volume < 40 µl, increase the volume to 40 µl with RSB. \Box 2 Use 500 ng of each DNA library quantified by QuantiFluor. \Box 3 Add the following to a new plate. Library pool (40 μl) EHB (50 μl) ► CSO (10 µl) $\Box 4$ Shake at 1200 rpm for 1 minute. Centrifuge at 280 × g for 1 minute. \Box 6 Place on the thermal cycler and run the NRC HYB program. Keep at the 58°C holding temperature for at least 90 minutes and up to 24 hours.

Capture Hybridized Probes

\square 2	Transfer all volumes.
	Add 250 µl SMB.
	·
$\Box 4$	1
$\Box 5$	Incubate at room temperature for 25 minutes.
$\Box 6$	Centrifuge at 280 × g for 1 minute.
$\Box 7$	Place on a magnetic stand until liquid is clear.
$\square 8$	Remove and discard all supernatant.
<u>9</u>	Remove from the magnetic stand.
$\Box 10$	Wash 2 times with 200 µl EWS.
$\Box 11$	Mix 28.5 μ l EE1 and 1.5 μ l 2 N NaOH, and then
	vortex.
$\Box 12$	Add 23.5 µl elution premix.
$\Box 13$	Shake at 1800 rpm for 2 minutes.
$\Box 14$	Incubate at room temperature for 2 minutes.
$\Box 15$	Centrifuge at 280 × g for 1 minute.
□16	Place on a magnetic stand until liquid is clear.
$\Box 17$	Transfer 21 µl supernatant.
$\Box 18$	Add 4 µl ET2.
□19	Shake at 1200 rpm for 1 minute.
	Centrifuge at 280 × g for 1 minute.
SA	FE STOPPING POINT
If :	you are stopping, seal the plate and store at
	5°C to -15°C for up to 7 days.

Perform Second Hybridization

$\Box 1$ Add the following	g.
----------------------------	----

- ▶ RSB (15 µl)
- ► EHB (50 µl)
- > CSO (10 μl)
- \Box 2 Shake at 1200 rpm for 1 minute.
- \Box 3 Centrifuge at 280 × g for 1 minute.
- $\Box 4$ Place on the thermal cycler and run the NRC HYB program.
- □5 Keep at the 58°C holding temperature for at least 14.5 hours and up to 24 hours.

For Research Use Only. Not for use in diagnostic procedures.

Perform Second Capture

$\Box 1$	Centrifuge at 280 × g for 1 minute.
$\square 2$	Transfer supernatant.
$\square 3$	Add 250 µl SMB.
$\Box 4$	Shake at 1200 rpm for 5 minutes.
$\Box 5$	Incubate at room temperature for 25 minutes.
□ 6	Centrifuge at 280 × g for 1 minute.
$\Box 7$	Place on a magnetic stand until liquid is clear.
$\square 8$	Remove and discard all supernatant.
<u>9</u>	Remove from the magnetic stand.
$\Box 10$	Wash 2 times with 200 µl EWS.
$\Box 11$	Mix 28.5 μ l EE1 and 1.5 μ l 2 N NaOH, and then
	vortex.
$\Box 12$	Add 23.5 µl elution premix.
$\Box 13$	Shake at 1800 rpm for 2 minutes.
$\Box 14$	Incubate at room temperature for 2 minutes.
	Centrifuge at 280 × g for 1 minute.
$\Box 16$	Place on a magnetic stand until liquid is clear.
$\Box 17$	Transfer 21 µl supernatant.
	Add 4 μl ET2.
□19	Shake at 1800 rpm for 1 minute.
$\square 20$	Centrifuge at 280 × g for 1 minute.

Clean Up Captured Library

$\Box 1$	Add 45 µl SPB.
$\square 2$	Shake at 1800 rpm for 1 minute.
$\square 3$	Incubate at room temperature for 10 minutes.
$\Box 4$	Centrifuge at 280 × g for 1 minute.
$\Box 5$	Place on a magnetic stand until liquid is clear.
$\Box 6$	Remove and discard all supernatant.
$\Box 7$	Wash 2 times with 200 μ l 80% EtOH.
$\square 8$	Use a 20 µl pipette to remove residual EtOH.
□9	Air-dry for 10 minutes.
$\Box 10$	Add 27.5 µl RSB.
$\Box 11$	Shake at 1800 rpm for 1 minute.
$\Box 12$	Incubate at room temperature for 2 minutes.
$\Box 13$	Centrifuge at 280 × g for 1 minute.
$\Box 14$	Place on a magnetic stand until liquid is clear.
$\Box 15$	Transfer 25 µl supernatant.
SA	FE STOPPING POINT
If y	you are stopping, seal the plate and store at
	5°C to -15°C for up to 7 days.

Amplify Enriched Library

$\Box 1$	Add 5 µl PPC.
$\square 2$	Add 20 µl NEM.
$\square 3$	Shake at 1200 rpm for 1 minute.
$\Box 4$	Centrifuge at 280 × g for 1 minute.
$\Box 5$	Place on the thermal cycler and run the NEM
	AMP12 program.
CA	EE STOPPING POINT

SAFE STOPPING POINT

If you are stopping, seal the plate and store at

2°C to 8°C for up to 2 days.

For Research Use Only. Not for use in diagnostic procedures.

Clean Up Amplified Enriched Library

Centrifuge at 280 × g for 1 minute. Transfer 50 µl. Add 90 µl SPB. Shake at 1800 rpm for 1 minute. Incubate at room temperature for 10 minutes. Centrifuge at 280 × g for 1 minute. Place on a magnetic stand until liquid is clear. $\square 8$ Remove and discard all supernatant. Wash 2 times with 200 µl 80% EtOH. \Box 10 Use a 20 µl pipette to remove residual EtOH. \Box 11 Air-dry on the magnetic stand for 10 minutes. \square 12 Add 32.5 µl RSB. \square 13 Shake at 1800 rpm for 1 minute. \Box 14 Incubate at room temperature for 2 minutes. \Box 15 Centrifuge at 280 × g for 1 minute. \Box 16 Place on a magnetic stand until liquid is clear. \Box 17 Transfer 30 µl supernatant. SAFE STOPPING POINT

If you are stopping, seal the plate and store at

-25°C to -15°C for up to 7 days.

Check Enriched Libraries

- Quantify using a fluorometric method.
 If the concentration is higher than the quantitative range for the High Sensitivity DNA chip, dilute the library 1:10 with RSB.
- \square 3 Run 1 μ l using a High Sensitivity DNA chip.

Prepare Consumables

$\Box 1$	Remove the reagent cartridge from -25°C to -15°C
	storage.
$\square 2$	Thaw reagents in a room temperature water bath
	for 90 minutes.
$\square 3$	Invert the cartridge 5 times to mix reagents.
$\Box 4$	Gently tap on the bench to reduce air bubbles.
$\Box 5$	Remove a new flow cell package from 2°C to 8°C
	storage.
□ 6	Set the unopened flow cell package aside at room
	temperature for 30 minutes.
□ 7	Remove the flow cell from the foil package and
	flow cell container.
□8	Clean the glass surface of the flow cell with a
	lint-free alcohol wipe.
<u> </u>	Dry with a lint-free lens cleaning tissue.

Denature, Dilute, and Load Libraries

$\Box 1$	Dilute 100 µl 1 N NaOH to 1 ml 0.1 N NaOH.
$\square 2$	Invert the tube several times to mix.
$\square 3$	Thaw the Hybridization Buffer at room
	temperature.
$\Box 4$	Vortex briefly before use.
$\Box 5$	Thaw the RSB at room temperature.
$\Box 6$	Transfer 25 µl of the 4 nM library pool to a new
	microcentrifuge tube.
$\Box 7$	Add 75 µl RSB to dilute to 1 nM.
$\square 8$	Vortex briefly and then centrifuge at 280 × g for 1
	minute.
□9	Combine 5 µl library with 5 µl 0.1 N NaOH.
$\Box 10$	Vortex briefly and then centrifuge at $280 \times g$ for 1
	minute.
	Incubate at room temperature for 5 minutes.
	Add 5 µl 200 mM Tris-HCl, pH 7.0.
$\Box 13$	Vortex briefly and then centrifuge at 280 × g for 1
	minute.
	Add 985 µl of prechilled Hybridization Buffer.
$\Box 15$	Vortex briefly and then centrifuge at 280 × g for 1
	minute.
$\Box 16$	Transfer 180 µl library to a new microcentrifuge
	tube.
	Add 320 µl prechilled Hybridization Buffer.
$\Box 18$	Vortex briefly and then centrifuge at 280 × g for 1
	minute.
□19	[Optional] Denature and dilute a PhiX control to
	1.8 pM and a 1% spike-in to the final library.
□20	Clean the foil seal covering reservoir #16 using a
□04	low-lint tissue.
$\square 21$	Pierce the seal with a clean 1 ml pipette tip.

 \square 22 Add 500 µl prepared libraries into reservoir #16.

Perform a Sequencing Run

$\Box 1$	From the Home screen, select Sequence .
$\square 2$	Enter your user name and password.
$\square 3$	Select Next.
$\Box 4$	Select a run name from the list of available runs.
$\Box 5$	Select Next.
□6	Open the flow cell compartment door.
□7	Press the release button to the right of the flow cell latch.
$\square 8$	Place the flow cell on the flow cell stage over the
	alignment pins.
<u>9</u>	Close the flow cell latch to secure the flow cell.
$\Box 10$	Close the flow cell compartment door.
$\Box 11$	Open the reagent compartment door.
□12	Slide the reagent cartridge into the reagent
	compartment until the cartridge stops.
$\Box 13$	Remove the spent reagents bottle from the
	compartment.
$\Box 14$	Discard the contents and slide the empty spent
	reagents bottle into the compartment.
$\Box 15$	Close the compartment door and select Next .
□16	Confirm run parameters.
$\Box 17$	Select Next.
$\Box 18$	When the automated check is complete, select
	Start.
□19	Monitor run progress, intensities, and quality
	scores as metrics appear on the screen.

View Analysis Results

$\sqcup 1$	From the Local Run Manager dashboard, click
	the run name.
$\square 2$	From the Run Overview tab, review the
	sequencing run metrics.
$\square 3$	[Optional] Click the Copy to Clipboard 🗖 icon
	for access to the output run folder.
$\Box 4$	Click the Sequencing Information tab to review
	run parameters and consumables information.
$\Box 5$	Click the Samples and Results tab to view the
	analysis report.
□6	[Optional] Click the Copy to Clipboard history
	for access to the Analysis folder.