illumına

TruSight® Myeloid Workflow on the MiniSeq™ System

Illumina Custom Protocol

This checklist supports the following workflow choices.

Sequencing Instrument:	MiniSeq System
Setup Option	Local Run Manager
Library Preparation Kit:	TruSight Myeloid Sequencing Panel
Indexing:	Dual Indexing
Reagent Kits:	MiniSeq Kit
Analysis Workflow:	Amplicon
Analysis Software:	Local Run Manager

MiniSeq sequencing using TruSight Myeloid Sequencing Panel libraries

Set Run Parameters

$\sqcup 1$	Log in to Local Run Manager.
$\square 2$	Click Create Run, and select Amplicon.
$\square 3$	Enter a run name that identifies the run.
$\Box 4$	[Optional] Enter a run description.
$\Box 5$	From the Library Kit drop-down list, select
	TruSight Amplicon Panels.
$\Box 6$	Specify the number of cycles for the run.
$\Box 7$	Select a variant calling method.
$\square 8$	Click Show advanced module settings and
	specify the Read Stitching and Variant Quality
	Filter settings.
<u>9</u>	Click Import Manifests.
$\Box 10$	Navigate to the manifest file.
$\Box 11$	Enter a unique sample ID.
\Box 12	[Optional] Enter a sample description.
$\Box 13$	Select an Index 1 adapter.
$\Box 14$	Select an Index 2 adapter.
$\Box 15$	Select a manifest file.
$\Box 16$	Select a reference genome.
□17	Click Save Run

Hybridize Oligo Pool

$\Box 1$	Add 5 µl ACD1 and 5 µl TE or water to 1 well of
	the HYP plate.
$\square 2$	Add 10 µl gDNA to each remaining well.
$\square 3$	Add 5 µl TSO to each well containing gDNA.
$\Box 4$	Centrifuge at 1000 × g for 1 minute.
$\Box 5$	Add 35 µl OHS2. Pipette to mix.
□ 6	Centrifuge at 1000 × g for 1 minute.
$\Box 7$	Place on the preheated heat block and incubate
	for 1 minute.
$\square 8$	Reset the temperature to 40°C and incubate for 80
	minutes.

Extend and Ligate Bound Oligos

Remove Unbound Oligos

□1 Make sure that the heat block has cooled to 40°C. □1 Add 45 μl ELM4 to the FPU plate. □2 Remove from the heat block. □2 Incubate at 37°C for 45 minutes. □3 Centrifuge at 1000 × g for 1 minute. □4 Transfer each sample to the FPU plate. □5 Cover and centrifuge at 2400 × g for 5 minutes. □6 Wash 2 times with 45 μl SW1. □7 Reassemble the FPU plate. □8 Add 45 μl UB1. □9 Cover and centrifuge at 2400 × g for 5 minutes.

Amplify Libraries

$\Box 1$	Arrange the Index 1 (i	7) adapters in columns 1–
□ 2		5) adapters in rouge A. H.
□2 □3		5) adapters in rows A–H.
	Fixture.	a TruSeq Index Plate
$\Box 4$		ipette to add 4 µl of each
	Index 1 (i7) adapter to	
□ 5		ipette to add 4 µl of each
	Index 2 (i5) adapter to	
□ 6	Add 56 µl TDP1 to 2.	
	Invert to mix.	
□ 8	When incubation is co	omplete, remove the
		cubator and remove the
	seal.	
<u>9</u>	Cover and centrifuge	at 2400 × g for 5 minutes.
	_	ipette to add 25 µl 50 mM
	NaOH.	•
$\Box 11$	Incubate at room tem	perature for 5 minutes.
□12	Transfer 22 µl PMM2	/TDP1 master mix to the
	IAP plate.	
□13	Transfer samples elut	ed from the FPU plate to the
	IAP plate.	
	Centrifuge at 1000 × g	
	Transfer to the post-ar	•
□16		d number (X) of PCR cycles
	using the following ta	ble:
	Number of	Number of PCR
	Amplicons in TSO	Cycles (X)
	< 96 amplicons	33

Number of	Number of PCR
Amplicons in TSO	Cycles (X)
< 96 amplicons	33
97–384 amplicons	28
385–768 amplicons	27
769–1536 amplicons	26

□17 Perform PCR on a thermal cycler using the following program:

Illumina Custom Protocol

For Research Use Only. Not for use in diagnostic procedures.

- ▶ 95°C for 3 minutes
- X cycles of:
 - ▶ 95°C for 30 seconds
 - ▶ 66°C for 30 seconds
 - ▶72°C for 60 seconds
- ▶ 72°C for 5 minutes
- ▶ Hold at 10°C

SAFE STOPPING POINT

If you are stopping, leave the plate on the thermal cycler at 2° C to 8° C overnight.

Clean Up Libraries

$\Box 1$	Centrifuge the IAP plate at 1000 × g for 1 minute.
$\square 2$	Run an aliquot of the libraries on 4% agarose gel
	(5 μl) or Bioanalyzer (1 μl).
$\square 3$	Add 45 µl AMPure XP beads to the CLP plate.
$\Box 4$	Transfer all the supernatant from the IAP plate to
	the CLP plate.
$\Box 5$	1
□6	Incubate at room temperature for 10 minutes.
	Place on a magnetic stand until liquid is clear.
	Remove and discard all supernatant.
	Wash 2 times with 200 µl 80% EtOH.
	Use a 20 µl pipette to remove residual EtOH.
$\Box 11$	Remove from the magnetic stand and air-dry for
_	10 minutes.
	Add 30 µl EBT.
	Shake at 1800 rpm for 2 minutes.
	Incubate at room temperature for 2 minutes.
	Place on a magnetic stand until liquid is clear.
□16	Transfer 20 μ l supernatant from the CLP plate to the LNP plate.
□17	Centrifuge at 1000 × g for 1 minute.
	FE STOPPING POINT
	you are stopping, seal the plate and store at
	C to 8°C for up to 3 days. Alternatively, store at 5°C to -15°C for up to 7 days.
	o to to o tor up to r days.

Normalize Libraries

te.	$\Box 1$	1 1
el		conical tube.
	$\square 2$	Use a P1000 pipette to resuspend LNB1.
	$\square 3$	Transfer 800 µl LNB1 to the tube of LNA1.
to	$\Box 4$	Add the LNA1/LNB1 mix to a trough.
	□5	Add 45 µl LNA1/LNB1 to the LNP plate.
	□6	Shake at 1800 rpm for 30 minutes.
		Place on a magnetic stand until liquid is clear.
		Remove and discard all supernatant.
		Remove from the magnetic stand.
		Wash 2 times with 45 µl LNW1.
	$\Box 11$	Remove residual LNW1.
or	□12	Remove from the magnetic stand.
	□13	Add 30 µl fresh 0.1 N NaOH.
	$\Box 14$	Shake at 1800 rpm for 5 minutes.
	□15	Place the LNP plate on a magnetic stand until
		liquid is clear.
	□16	Add 30 µl LNS2 to the SGP plate.
to		Transfer 30 µl supernatant from the LNP plate to
		the SGP plate.
	□18	Centrifuge at 1000 × g for 1 minute.
	SA	FE STOPPING POINT

If you are stopping, seal the plate and store at

-25°C to -15°C for up to 30 days.

Illumina Custom Protocol

For Research Use Only. Not for use in diagnostic procedures.

Pool Libraries

- \Box 1 Transfer 5 µl to an 8-tube strip.
- \Box 2 Seal the plate and store at -25°C to -15°C.
- 3 Transfer the contents of the 8-tube strip to the PAL tube.

Prepare Consumables

	Remove the reagent cartriage from -25°C to -15°C	
	storage.	
$\square 2$	Thaw reagents in a room temperature water bath	
	for 90 minutes.	
$\square 3$	Invert the cartridge 5 times to mix reagents.	F
$\Box 4$	Gently tap on the bench to reduce air bubbles.	F
□ 5	Remove a new flow cell package from 2°C to 8°C	
	storage.	
□6	Set the unopened flow cell package aside at room	
	temperature for 30 minutes.	
$\Box 7$	Remove the flow cell from the foil package and	
	flow cell container.	
□8	Clean the glass surface of the flow cell with a	
	lint-free alcohol wipe.	F
<u>9</u>	Dry with a lint-free lens cleaning tissue.	
	·	

Denature, Dilute, and Load Libraries

$\Box 1$	Thaw the Hybridization Buffer at room
	temperature.
$\square 2$	Vortex briefly before use.
$\square 3$	Preheat the incubator to 98°C.
$\Box 4$	Combine the 5 µl pooled libraries and 995 µl
	prechilled Hybridization Buffer in a
	microcentrifuge tube.
$\Box 5$	Vortex briefly and then centrifuge at 280 × g for 1
	minute.
□6	Transfer 250 µl diluted library to a new
	microcentrifuge tube.
$\Box 7$	Add 250 µl prechilled Hybridization Buffer.
$\square 8$	Vortex briefly and then centrifuge at 280 × g for 1
	minute.
<u>9</u>	Place the tube on the preheated incubator for 2
	minutes.
$\Box 10$	Immediately cool on ice.
$\Box 11$	Leave on ice for 5 minutes.
□12	[Optional] Denature and dilute a PhiX control to
	1.8 pM and a 1% spike-in to the final library.
□13	Clean the foil seal covering reservoir #16 using a
	low-lint tissue.
$\Box 14$	Pierce the seal with a clean 1 ml pinette tip

 \Box 15 Add 500 µl prepared libraries into reservoir #16.

Perform a Sequencing Run

$\Box 1$	From the Home screen, select Sequence .
$\square 2$	Enter your user name and password.
$\square 3$	Select Next.
$\Box 4$	Select a run name from the list of available run
$\Box 5$	Select Next.
□ 6	Open the flow cell compartment door.
□ 7	Press the release button to the right of the flow cell latch.
$\square 8$	Place the flow cell on the flow cell stage over the
	alignment pins.
<u>9</u>	Close the flow cell latch to secure the flow cell.
$\Box 10$	Close the flow cell compartment door.
$\Box 11$	Open the reagent compartment door.
$\Box 12$	Slide the reagent cartridge into the reagent
	compartment until the cartridge stops.
$\Box 13$	Remove the spent reagents bottle from the
	compartment.
$\Box 14$	Discard the contents and slide the empty spent
	reagents bottle into the compartment.
	Close the compartment door and select Next .
$\Box 16$	Confirm run parameters.
$\Box 17$	Select Next.
$\Box 18$	When the automated check is complete, select
	Start.
□19	Monitor run progress, intensities, and quality
	scores as metrics appear on the screen.

View Analysis Results

□1 From the Local Run Manager dashboard, click the run name.
□2 From the Run Overview tab, review the sequencing run metrics.
□3 [Optional] Click the Copy to Clipboard □ icon for access to the output run folder.
□4 Click the Sequencing Information tab to review run parameters and consumables information.
□5 Click the Samples and Results tab to view the analysis report.
□6 [Optional] Click the Copy to Clipboard □ icon for access to the Analysis folder.